Interseismic coupling on the main Himalayan thrust
نویسندگان
چکیده
We determine the slip rate and pattern of interseismic coupling on the Main Himalayan Thrust along the entire Himalayan arc based on a compilation of geodetic, interferometric synthetic aperture radar, and microseismicity data. We show that convergence is perpendicular to the arc and increases eastwards from 13.3 ± 1.7 mm/yr to 21.2 ± 2.0 mm/yr. These rates are comparable to geological and geomorphic estimates, indicating an essentially elastic geodetic surface strain. The interseismic uplift rate predicted from the coupling model closely mimics the topography, suggesting that a small percentage of the interseismic strain is permanent. We find that the fault is fully locked along its complete length over about 100 km width. We don’t find any resolvable aseismic barrier that could affect the seismic segmentation of the arc and limit the along-strike propagation of seismic ruptures. The moment deficit builds up at a rate of 15.1 ± 1 × 1019 N m/yr for the entire length of the Himalaya.
منابع مشابه
Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake
The Himalayan mountain range has been the locus of some of the largest continental earthquakes, including the 2015 magnitude 7.8 Gorkha earthquake. Competing hypotheses suggest that Himalayan topography is sustained and plate convergence is accommodated either predominantly on the main plate boundary fault, or more broadly across multiple smaller thrust faults. Here we use geodetic measurements...
متن کاملStress buildup in the Himalaya
[1] The seismic cycle on a major fault involves long periods of elastic strain and stress accumulation, driven by aseismic ductile deformation at depth, ultimately released by sudden fault slip events. Coseismic slip distributions are generally heterogeneous with most of the energy being released in the rupture of asperities. Since, on the long term, the fault’s walls generally do not accumulat...
متن کاملOn the use of dislocations to model interseismic strain and stress build-up at intracontinental thrust faults
Creeping dislocations in an elastic half-space are commonly used to model interseismic deformation at subduction zones, and might also apply to major intracontinental thrust faults such as the Main Himalayan Thrust. Here, we compare such models with a more realistic 2-D finite element model that accounts for the mechanical layering of the continental lithosphere and surface processes, and that ...
متن کاملActive folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal
We analyze geomorphic evidence of recent crustal deformation in the subHimalaya of central Nepal, south of the Kathmandu Basin. The Main Frontal Thrust fault (MFT), which marks the southern edge of the sub-Himalayan fold belt, is the only active structure in that area. Active fault bend folding at the MFT is quantified from structural geology and fluvial terraces along the Bagmati and Bakeya Ri...
متن کاملConvergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard
[1] We document geodetic strain across the Nepal Himalaya using GPS times series from 30 stations in Nepal and southern Tibet, in addition to previously published campaign GPS points and leveling data and determine the pattern of interseismic coupling on the Main Himalayan Thrust fault (MHT). The noise on the daily GPS positions is modeled as a combination of white and colored noise, in order t...
متن کامل